SpiceyPy Documentation
Release 4.0.1

Andrew Annex

May 31, 2021






1 Introduction
2 Citing SpiceyPy

3 Documentation Overview

3.1 Citing SpiceyPy . . . . . . .
32 Imstallation . . . ... ...
3.2.1  If you use anaconda/miniconda/condarun: . . . . . ... ... ..
322 Offline installation . . . . ... ... ... ... ... . ...,
3.23 Asimple example program . . . . . ... ... oL
3.2.4  SpiceyPy Documentation . . . . . ... ... ... ... ...,
33 Commonlssues . . ... ... ...
3.3.1  SSL Alert Handshake Issue . . . . . ... ... ..........
3.4 How to install from source (for bleeding edge updates) . . . . . ... ...
3.5 Cassini Position Example . . . .. ... ... ... ... . ... ...
3.6 CellsExplained. . . . . . ... ... ... e
3.7 Exceptionsin SpiceyPy . . .. ... ... o,
3.7.1  Exception Hierarchy Basics . . . . . ... ... ... .......
372 ExceptionContents . . . . . . . . ... ...
373 NotFoundErrors . . ... ... ... .. ........ . ....
3.8 Lessons . . ..o e e e e e e e e
3.8.1 Basicsof SpiceyPy . .. .. ... ... ... L.
3.8.2  Remote Sensing Hands-On Lesson, using CASSINT . . . . . . ..
3.8.3  Geometric Event Finding Hands-On Lesson, using MEX
3.8.4  In-situ Sensing Hands-On Lesson, using CASSINI . . . . .. ..
3.8.5 Binary PCKHands-OnLesson . . . ... ... ..........
3.8.6  Other Stuff (Python) . . . ... ... ... ... ... ...
39 SpiceyPypackage . . ... ... ...
39.1 spiceypymodule . ... ... ... ... .
3.9.2  spiceypy.utils.support_typesmodule . . . . ... ... ... ...
39.3  spiceypy.utils.callbacksmodule . . . . . . ... ... 0oL,
394  spiceypy.utils.exceptionsmodule . . . ... ..o
39.5 spiceypy.utils.libspice module . . ... ... ... ... ...,

4 Indices and tables
Python Module Index

Index

CONTENTS

O 0001 31NN Lt L







CHAPTER
ONE

INTRODUCTION

SpiceyPy is a python wrapper for the SPICE Toolkit. SPICE provides access and tools to interact with planetary and
spacecraft ephemeris and ancillary engineering information. Please visit the NAIF website for more details about
SPICE.

IMPORTANT: 1 have no current affiliation with NASA, NAIF, or JPL. The code is provided “as is”, use at your own
risk.



https://naif.jpl.nasa.gov/naif/

SpiceyPy Documentation, Release 4.0.1

2 Chapter 1. Introduction



CHAPTER
TWO

CITING SPICEYPY

If you are publishing work that uses SpiceyPy, please cite SpiceyPy and the SPICE toolkit. SpiceyPy can be cited using
the JOSS DOI (https://doi.org/10.21105/joss.02050) or with the following:

Annex et al., (2020). SpiceyPy: a Pythonic Wrapper for the SPICE Toolkit. Journal of Open Source
Software, 5(46), 2050, https://doi.org/10.21105/joss.02050

Instructions for how to cite the SPICE Toolkit are available on the NAIF website:
https://naif.jpl.nasa.gov/naif/credit.html.
To cite information about SpiceyPy usage statistics, please cite my 2017 and or 2019 abstracts as appropriate below:
1. 2017 abstract: https://ui.adsabs.harvard.edu/abs/2017LPIC01986.7081A/abstract.
2. 2019 abstract: https://ui.adsabs.harvard.edu/abs/2019LPIC02151.7043 A/abstract.



https://doi.org/10.21105/joss.02050
https://naif.jpl.nasa.gov/naif/credit.html
https://ui.adsabs.harvard.edu/abs/2017LPICo1986.7081A/abstract
https://ui.adsabs.harvard.edu/abs/2019LPICo2151.7043A/abstract

SpiceyPy Documentation, Release 4.0.1

4 Chapter 2. Citing SpiceyPy



CHAPTER
THREE

DOCUMENTATION OVERVIEW

This is the documentation for SpiceyPy. The documentation for each function in the wrapper is in large part copied
from the “Abstract” and “Brief_I/O” sections of the corresponding CSPICE function documentation. Each wrapper
function has a link back to the corresponding original CSPICE function documentation hosted at the NAIF website.
For more in-depth information about SPICE, please visit the NAIF website or click here to view the entire CSPICE
documentation.

The intent of the function doc-strings is to serve only as a quick reference to what the parameter’s expected types are
for the purpose of getting started with the wrapper. As each function has a link to the CSPICE documentation for that
function, more detailed explanations are deferred to the NAIF via those links.

Contents:

3.1 Citing SpiceyPy

If you are publishing work that uses SpiceyPy, please cite SpiceyPy and the SPICE toolkit.
SpiceyPy can be cited using the JOSS DOI (https://doi.org/10.21105/joss.02050) or with the following:

Annex et al., (2020). SpiceyPy: a Pythonic Wrapper for the SPICE Toolkit. Journal of Open Source
Software, 5(46), 2050, https://doi.org/10.21105/joss.02050

Instructions for how to cite the SPICE Toolkit are available on the NAIF website: https://naif.jpl.nasa.gov/naif/
credit.html.

To cite information about SpiceyPy usage statistics, please cite my 2017 and or 2019 abstracts as appropriate below:
1. 2017 abstract: https://ui.adsabs.harvard.edu/abs/2017LPIC01986.7081A/abstract.
2. 2019 abstract: https://ui.adsabs.harvard.edu/abs/2019LPIC02151.7043A/abstract.

3.2 Installation

SpiceyPy is currently supported on Mac, Linux, FreeBSD, and Windows systems.

If you are new to python, it is a good idea to read a bit about it first https://docs.python-guide.org. For new installations
of python, it is encouraged to install and or update: pip, setuptools, wheel, and numpy first before installing SpiceyPy

pip install -U pip setuptools wheel
pip install -U numpy

Then to install SpiceyPy, simply run:



https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/
https://doi.org/10.21105/joss.02050
https://naif.jpl.nasa.gov/naif/credit.html
https://naif.jpl.nasa.gov/naif/credit.html
https://ui.adsabs.harvard.edu/abs/2017LPICo1986.7081A/abstract
https://ui.adsabs.harvard.edu/abs/2019LPICo2151.7043A/abstract
https://docs.python-guide.org

SpiceyPy Documentation, Release 4.0.1

pip install spiceypy

3.2.1 If you use anaconda/miniconda/conda run:

conda config --add channels conda-forge
conda install spiceypy

If no error was returned you have successfully installed SpiceyPy. To verify this you can list the installed packages via
this pip command:

pip list

You should see spicepy in the output of this command. Or you can start a python interpreter and try importing SpiceyPy
like so:

As of 04/10/2021, spiceypy has experimental support for 64bit ARM processors for linux and macos (linux-aarch64 &
osx-arm64) via the conda-forge distribution.

import spiceypy

# print out the toolkit version installed
print(spiceypy.tkvrsn('TOOLKIT"))

This should print out the toolkit version without any errors. You have now verified that SpiceyPy is installed.

3.2.2 Offline installation

If you need to install SpiceyPy without a network or if you have a prebuilt shared library at hand, you can override the
default behaviour of SpiceyPy by using the CSPICE_SRC_DIR and CSPICE_SHARED_LIB environment variables
respectively.

For example, if you have downloaded SpiceyPy and the CSPICE toolkit, and extracted CSPICE to /tmp/cspice you can
run:

export CSPICE_SRC_DIR="/tmp/cspice"
python setup.py install

Or if you have a shared library of CSPICE located at /tmp/cspice.so, you can run:

export CSPICE_SHARED_LIB="/tmp/cspice.so"
python setup.py install

Both examples above assume you have cloned the SpiceyPy repository and are running those commands within the
project directory.

6 Chapter 3. Documentation Overview




SpiceyPy Documentation, Release 4.0.1

3.2.3 A simple example program

This script calls the spiceypy function ‘tkvrsn’ and outputs the return value.

File tkvrsn.py

from __future__ import print_function

import spiceypy

def print_ver():
"""Prints the TOOLKIT version

mirn

print(spiceypy.tkvrsn('TOOLKIT"))

if __name__ == '__main__
print_ver()

From the command line, execute the function:

$ python tkvrsn.py
CSPICE_NOO66

From Python, execute the function:

$ python

>>> import tkvrsn

>>> tkvrsn.print_ver()
CSPICE_NO0O66

3.2.4 SpiceyPy Documentation

The current version of SpiceyPy does not provide extensive documentation, but there are several ways to navigate your
way through the Python version of the toolkit. One simple way is to use the standard Python mechanisms. All interfaces
implemented in SpiceyPy can be listed using the standard built-in function dir(), which returns an alphabetized list of
names comprising (among) other things, the API names. If you need to get additional information about an API
parameters, the standard built-in function help() could be used:

>>> import spiceypy
>>> help(spiceypy.tkvrsn)

which produces

Help on function tkvrsn in module spiceypy.spiceypy:

tkvrsn(item)
Given an item such as the Toolkit or an entry point name, return
the latest version string.

https://naif. jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/tkvrsn_c.
html

:param item: Item for which a version string is desired.
:type item: str

(continues on next page)

3.2. Installation 7




SpiceyPy Documentation, Release 4.0.1

(continued from previous page)

:return: the latest version string.
rtype: str

As indicated in the help on the function, the complete documentation is available on the CSPICE toolkit version.
Therefore it is recommended to have the CSPICE toolkit version installed locally in order to access its documentation
offline.

3.3 Common Issues

3.3.1 SSL Alert Handshake Issue

Attention: As of 2020, users are not likely to experience this issue with python version 3.7 and above, and for
newer 3.6.X releases. Users running older operating systems are encouraged to update to newer versions of python
if they are attempting to install version 3.0.0 or above. See other sections of this document for more information.

In early 2017, JPL updated to a TLS1.2 certificate and enforced https connections causing installation issues for users,
in particular for macOS users, with OpenSSL versions older than 1.0.1g. This is because older versions of OpenSSL
still distributed in some environments which are incompatible with TLS1.2. As of late 2017 SpiceyPy has been updated
with a strategy that can mitigate this issue on some systems, but it may not be totally reliable due to known deficiencies
in setuptools and pip.

Another solution is to configure a new python installation that is linked against a newer version of OpenSSL, the easiest
way to do this is to install python using homebrew, once this is done spiceypy can be installed to this new installation
of python (IMHO this is the best option).

If your python 3.6 distribution was installed from the packages available at python.org an included command “Install
Certificates.command” should be run before attempting to install SpiceyPy again. That command installs the certifi
package that can also be install using pip.

Alternatively, installing an anaconda or miniconda python distribution and installing SpiceyPy using the conda com-
mand above is another possible work around.

Users continuing to have issues should report an issue to the github repository.
Supporting links:
* https://bugs.python.org/issue29065
* https://github.com/psf/requests/issues/2022
* https://pyfound.blogspot.com/2017/01/time-to-upgrade- your-python-tls-v12.html
* https://www.python.org/dev/peps/pep-0518
* https://github.com/Andrew Annex/SpiceyPy/pull/202

8 Chapter 3. Documentation Overview



https://bugs.python.org/issue29065
https://github.com/psf/requests/issues/2022
https://pyfound.blogspot.com/2017/01/time-to-upgrade-your-python-tls-v12.html
https://www.python.org/dev/peps/pep-0518
https://github.com/AndrewAnnex/SpiceyPy/pull/202

SpiceyPy Documentation, Release 4.0.1

3.4 How to install from source (for bleeding edge updates)

Attention: If you have used the pip or conda install commands above you do not need to do any of the following
commands. Installing from source is intended for advanced users. Users on machines running Windows should take
note that attempting to install from source will require software such as visual studio and additional environment
configuration. Given the complexity of this Windows users are highly encouraged to stick with the releases made
available through PyPi/Conda-Forge.

If you wish to install from source, first simply clone the repository by running the following in your favorite shell:

git clone https://github.com/AndrewAnnex/SpiceyPy.git

If you do not have git, you can also directly download the source code from the GitHub repo for SpiceyPy at https:
//github.com/Andrew Annex/SpiceyPy

To install the library, simply change into the root directory of the project and then run:

python setup.py install

The installation script will download the appropriate version of the SPICE toolkit for your system, and will build a
shared library from the included static library files. Then the installation script will install SpiceyPy along with the
generated shared library into your site-packages directory.

3.5 Cassini Position Example

Below is an example that uses spiceypy to plot the position of the Cassini spacecraft relative to the barycenter of Saturn.

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

First import spiceypy and test it out.

import spiceypy as spice

# Print out the toolkit version
spice.tkvrsn("TOOLKIT")

'"CSPICE_NOO66'

We will need to load some kernels. You will need to download the following kernels from the NAIF servers via the
links provided. After the kernels have been downloaded to a common directory write a metakernel containing the file
names for each downloaded kernel (provided after the links). I named the metakernel ‘cassMetaK.txt” for this example.
For more on defining meta kernels in spice, please consult the Kernel Required Reading.

¢ naif0009.tls
¢ cas00084.tsc
* cpck05Mar2004.tpc

e cas_v37.tf

3.4. How to install from source (for bleeding edge updates) 9



https://github.com/AndrewAnnex/SpiceyPy
https://github.com/AndrewAnnex/SpiceyPy
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/kernel.html
https://naif.jpl.nasa.gov/pub/naif/generic_kernels/lsk/a_old_versions/naif0009.tls
https://naif.jpl.nasa.gov/pub/naif/CASSINI/kernels/sclk/cas00084.tsc
https://naif.jpl.nasa.gov/pub/naif/CASSINI/kernels/pck/cpck05Mar2004.tpc
https://naif.jpl.nasa.gov/pub/naif/CASSINI/kernels/fk/release.11/cas_v37.tf

SpiceyPy Documentation, Release 4.0.1

04135_04171pc_psiv2.bc
030201 AP_SK_SM546_T45.bsp

e cas_iss_v09.ti
020514_SE_SAT105.bsp
981005_PLTEPH-DE405S.bsp

# The meta kernel file contains entries pointing to the following SPICE kernels, which.,
—the user needs to download.
https://naif.jpl.nasa.gov/pub/naif/generic_kernels/lsk/a_old_versions/naif0009.tls
https://naif.jpl.nasa.gov/pub/naif/CASSINI /kernels/sclk/cas®0084.tsc

https://naif. jpl.nasa.gov/pub/naif/CASSINI/kernels/pck/cpck®5Mar2004. tpc
https://naif. jpl.nasa.gov/pub/naif/CASSINI /kernels/fk/release.11/cas_v37.tf
https://naif. jpl.nasa.gov/pub/naif/CASSINI /kernels/ck/04135_04171pc_psiv2.bc
https://naif.jpl.nasa.gov/pub/naif/CASSINI /kernels/spk/030201AP_SK_SM546_T45.bsp
https://naif.jpl.nasa.gov/pub/naif/CASSINI /kernels/ik/release.11/cas_iss_v09.ti
https://naif. jpl.nasa.gov/pub/naif/CASSINI/kernels/spk/020514_SE_SAT105.bsp
https://naif. jpl.nasa.gov/pub/naif/CASSINI/kernels/spk/981005_PLTEPH-DE405S.bsp

The following is the contents of a metakernel that was saved with
the name 'cassMetaK.txt'.
\begindata
KERNELS_TO_LOAD=(
'naif0009. tls',

'cas®0084. tsc',
'cpck®5Mar2004. tpc',
'9020514_SE_SAT105.bsp',
'981005_PLTEPH-DE405S.bsp’,
'030201AP_SK_SM546_T45.bsp’',
'04135_04171pc_psiv2.bc',
'‘cas_v37.tf,
'cas_iss_v09.ti")

\begintext

R T TR TR TR TR I R R S T R R R L R

spice. furnsh("./cassMetaK.txt")

step = 4000
# we are going to get positions between these two dates
utc = ['Jun 20, 2004', 'Dec 1, 2005']

# get et values one and two, we could vectorize strlet
etOne = spice.str2et(utc[0])

etTwo = spice.str2et(utc[1])

print ("ET One: {}, ET Two: {}".format(etOne, etTwo))

ET One: 140961664.18440723, ET Two: 186667264.18308285

# get times
times = [x*(etTwo-etOne)/step + etOne for x in range(step)]

(continues on next page)

10 Chapter 3. Documentation Overview



https://naif.jpl.nasa.gov/pub/naif/CASSINI/kernels/ck/04135_04171pc_psiv2.bc
https://naif.jpl.nasa.gov/pub/naif/CASSINI/kernels/spk/030201AP_SK_SM546_T45.bsp
https://naif.jpl.nasa.gov/pub/naif/CASSINI/kernels/ik/release.11/cas_iss_v09.ti
https://naif.jpl.nasa.gov/pub/naif/CASSINI/kernels/spk/020514_SE_SAT105.bsp
https://naif.jpl.nasa.gov/pub/naif/CASSINI/kernels/spk/981005_PLTEPH-DE405S.bsp

SpiceyPy Documentation, Release 4.0.1

(continued from previous page)

# check first few times:
print(times[0:3])

[140961664.18440723, 140973090.5844069, 140984516.98440656]

# check the documentation on spkpos before continuing
help(spice. spkpos)

Help on function spkpos in module spiceypy.spiceypy:

spkpos(targ: str, et: Union[float, numpy.ndarray], ref: str, abcorr: str, obs: str) ->_
—Union[Tuple[numpy.ndarray, float], Tuple[numpy.ndarray, numpy.ndarray]]

Return the position of a target body relative to an observing

body, optionally corrected for light time (planetary aberration)

and stellar aberration.

https://naif. jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/spkpos_c.html

:param targ: Target body name.
:param et: Observer epoch.
:param ref: Reference frame of output position vector.
:param abcorr: Aberration correction flag.
:param obs: Observing body name.
:return:
Position of target,
One way light time between observer and target.

#Run spkpos as a vectorized function
positions, lightTimes = spice.spkpos('Cassini', times, 'J2000', 'NONE', 'SATURN.
—BARYCENTER")

# Positions is a 3xN vector of XYZ positions
print("Positions: ")
print(positions[0])

# Light times is a N vector of time
print("Light Times: ")
print(lightTimes[0])

Positions:

[-5461446.61080924 -4434793.40785864 -1200385.93315424]
Light Times:

23.8062238783

# Clean up the kernels
spice.kclear()

We will use matplotlib’s 3D plotting to visualize Cassini’s coordinates. We first convert the positions list to a 2D numpy
array for easier indexing in the plot.

3.5. Cassini Position Example 11




SpiceyPy Documentation, Release 4.0.1

positions = positions.T # positions is shaped (4000, 3), let's transpose to (3, 4000) for.

—easier indexing

fig = plt.figure(figsize=(9, 9))

ax = fig.add_subplot(111l, projection='3d")

ax.plot(positions[0], positions[1], positions[2])

plt.title('SpiceyPy Cassini Position Example from Jun 20, 2004 to Dec 1, 2005')

plt.show()

SpiceyPy Cassini Position Example from Jun 20, 2004 to Dec 1, 2005

750000

T O

250000

500000

750000

—1r000000

1250000

1500000

750000

—1000000

—8000000
—6000000

4000000 3000000

—2000000 ~4000000

12 Chapter 3. Documentation Overview



SpiceyPy Documentation, Release 4.0.1

3.6 Cells Explained

Spice Cells are data structures included in SPICE and serve as the equivalents to lists and sets for CSPICE. For more
primary documentation on cells, please see the Cells required reading. For SpiceyPy, cells can be constructed in a
variety of ways, shown below.

import spiceypy as spice

# create a spice bool cell using a function
bool_cell = spice.cell_bool(10)

# create a spice time cell using a function
time_cell = spice.cell_time(10)

# create a spice int cell using a function
int_cell = spice.cell_int(10)

# create a spice double cell using a function
double_cell = spice.cell_double(10)

# create a spice char cell using a function
char_cell = spice.cell_char(10, 10)

One can also use provided classes to provide easier type checking, in future versions SpiceyPy this may become default.

import spiceypy as spice

# create a spice bool cell using a function
bool_cell = spice.Cell_Bool(10)

# create a spice time cell using a function
time_cell = spice.Cell_Time(10)

# create a spice int cell using a function
int_cell = spice.Cell_Int(10)

# create a spice double cell using a function
double_cell = spice.Cell_Double(10)

# create a spice char cell using a function
char_cell = spice.Cell_Char(10, 10)

3.6. Cells Explained 13



https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/cells.html

SpiceyPy Documentation, Release 4.0.1

3.7 Exceptions in SpiceyPy

SpiceyPy by default checks the spice error system for errors after all function calls and will raise an exception containing
the error information when the spice indicates an error has occurred.

3.7.1 Exception Hierarchy Basics

SpiceyPy exceptions are all based on the spiceypy.utils.exceptions.SpiceyError exception. SpiceyError is
subclassed by spiceypy.utils.exceptions.SpiceyPyError to present a more consistent exception class for the
user. SpiceyPyError is subclassed by a number of exceptions that also inherit from some of the common builtin Python
exceptions:

spiceypy.utils.exceptions.NotFoundError ‘

l spiceypy.utils.exceptions.SpiceyPylOError ‘

‘ spiceypy.utils.exceptions.SpiceyPylndexError ‘

/iceypy,uti|s.exceptions.SpiceyPyKeyError ‘

spiceypy.utils.exceptions.SpiceyError H spiceypy.utils.exceptions.SpiceyPyError H spiceypy.utils.exceptions.SpiceyPyMemoryError ‘

‘ spiceypy.utils.exceptions.SpiceyPyRuntimeError ‘

‘ spiceypy.utils.exceptions.SpiceyPyTypeError ‘

‘ spiceypy.utils.exceptions.SpiceyPyValueError ‘

‘ spiceypy.utils.exceptions.SpiceyPyZeroDivisionError ‘

Spice defines hundreds of errors in the format “SPICE(ERROR_NAME)” which are also included in SpiceyPy by a
slightly different naming convention, where a Spice error “SPICE(QUERYFAILURE)” will correspond to the SpiceyPy
exception spiceypy.utils.exceptions.SpiceQUERYFAILURE.

These errors will inherit the appropriate parent SpiceyPyError with builtin exception mix-in if the correct corresponding
exception type is known. For example, spiceypy.utils.exceptions.SpiceDIVIDEBYZERO is a subclass of the
spiceypy.utils.exceptions.SpiceyPyZeroDivisionError.

spiceypy.utils.exceptions.SpiceyPyZeroDivisionError in turn, is a subclass of spiceypy.utils.
exceptions.SpiceyPyError and the built in ZeroDivisionError.

By subclassing the errors in this way, users can tune how granular their exception handling code will respond. For most
users the top level SpiceyError and SpiceyPyError will be sufficient for their needs.

14 Chapter 3. Documentation Overview



SpiceyPy Documentation, Release 4.0.1

3.7.2 Exception Contents

The exception message is a string that follows the format used elsewhere in spice and includes the toolkit version,
the short description, explanation, long format description, and traceback (of spice calls). Read the NAIF tutorial on
exceptions here. These values are stored in parameters of the exception object.

Here is an example of the exception message text:

spice. furnsh("/tmp/_null_kernel.txt")

will result in the following exception message which is also a parameter of the exception object.

Toolkit version: CSPICE66
SPICE(NOSUCHFILE) --

The attempt to load "/tmp/_null_kernel.txt" by the routine FURNSH failed. It could not.
—be located.

furnsh_c --> FURNSH --> ZZLDKER

SpiceyErrors, SpiceyPyErrors, and all subclasses of SpiceyPyErrors contain the following parameters that the user can
access:

1. tkvsn, the toolkit version of cspice used for example: “CSPICE66”.

2. short, the short error description which is the same as the granular exception object type when possible, for
example: “SPICE(NOSUCHFILE)”.

3. explain, if present is the explanation from spice for the error.

4. long, the long error message description from spice, for example: “The attempt to load *“/tmp/_null_kernel.txt”
by the routine FURNSH failed. It could not be located.”

5. traceback, sequence of calls within spice leading to the error, for example: “furnsh_c —> FURNSH —> ZZLD-
KER”.

6. message, the full exception message following the spice template from the example above.

3.7.3 Not Found Errors

Also, by default SpiceyPy captures the ‘found’ flags some functions return as it is not idiomatic to python as
a spiceypy.utils.exceptions.NotFoundError . This can be temporarily disabled using the spiceypy.
spiceypy.no_found_check () context manager that allows the found flag to be returned to the user for action. Out-
side of that context SpiceyPy functions will revert to default behavior. For vectorized functions, the found parameter
of the exception will contain an iterable of the found flags to help track down failed calls.

import spiceypy as spice
spice.bodc2n(-9991) # will raise an exception

with spice.no_found_check():

(continues on next page)

3.7. Exceptions in SpiceyPy 15



https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_docs/32_exceptions.pdf
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_docs/32_exceptions.pdf

SpiceyPy Documentation, Release 4.0.1

(continued from previous page)

name, found = spice.bodc2n(-9991) # found is now available, no exception raised!
assert not found # found is going to be False in this case.

spice.bodc2n(-9991) # will raise an exception again

There is also an accompanying context manager for enabling the default SpiceyPy behavior within a code block like
so:

import spiceypy as spice
spice.bodc2n(-9991) # will raise an exception

with spice.found_check():
name = spice.bodc2n(-9991) # will also raise an exception

In addition, for advanced users there are two function spiceypy.spiceypy. found_check_off() and spiceypy.
spiceypy.found_check_on() which will disable and enable the behavior without use of the context manager. Ad-
ditionally, a method spiceypy.spiceypy.get_found_catch_state() allows users to query the current state of
found flag catching setting.

3.8 Lessons

Here listed are the various SPICE lessons provided by the NAIF translated to use python code examples. Please refer
to the NAIF lesson files for the kernel files needed to complete the exercises and to obtain the full content naifiessons.

Contents:

3.8.1 Basics of SpiceyPy

Environment Set-up

Follow the installation instructions provided in the installation section.

Confirm SpiceyPy installation

There are multiple ways to verify your SpiceyPy installation. The first test is to simply run

pip list

You should see SpiceyPy in the list of your installed packages. If SpiceyPy is not present in the list then a configuration
issue in your environment caused SpiceyPy to be installed in a non-standard way. Note this is an error prone to systems
with multiple installed python versions.

If SpiceyPy is present in the pip list, then SpiceyPy is installed. Another verification step is within the python REPL
run:

import spiceypy as spice

The version of the installed cspice toolkit (note: not SpiceyPy’s version) should be printed out. Otherwise the Python
interpreter should output an explanatory error message.

16 Chapter 3. Documentation Overview



https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Lessons/

SpiceyPy Documentation, Release 4.0.1

A simple example program

The following calls the SPICE function spiceypy.spiceypy.tkvrsn() which outputs the version of cspice that
SpiceyPy is wrapping.

import spiceypy as spice

spice.tkvrsn('TOOLKIT")

This should output the following string:

'"CSPICE_NOO66'

3.8.2 Remote Sensing Hands-On Lesson, using CASSINI

November 20, 2017

Overview

In this lesson you will develop a series of simple programs that demonstrate the usage of SpiceyPy to compute a variety
of different geometric quantities applicable to experiments carried out by a remote sensing instrument flown on an
interplanetary spacecraft. This particular lesson focuses on a framing camera flying on the Cassini spacecraft, but
many of the concepts are easily extended and generalized to other scenarios.

References

This section lists SPICE documents referred to in this lesson.

In some cases the lesson explanations also refer to the information provided in the meta-data area of the kernels used in
the lesson examples. It is especially true in case of the FK and IK files, which often contain comprehensive descriptions
of the frames, instrument FOVs, etc. Since both the FK and IK are text kernels, the information provided in them can be
viewed using any text editor, while the meta information provided in binary kernels—SPKs and CKs—can be viewed
using “commnt” or” spacit” utility programs located in “cspice/exe” of Toolkit installation tree.

Tutorials

The following SPICE tutorials serve as references for the discussions in this lesson:

Name Lesson steps/functions it describes
Time Time Conversion

SCLK and LSK Time Conversion

SPK Obtaining Ephemeris Data

Frames Reference Frames

Using Frames Reference Frames

PCK Planetary Constants Data

CK Spacecraft Orientation Data

DSK Detailed Target Shape (Topography) Data

These tutorials are available from the NAIF ftp server at JPL:

3.8. Lessons 17




SpiceyPy Documentation, Release 4.0.1

https://naif. jpl.nasa.gov/naif/tutorials.html

Required Readings

Tip:

The Required Readings are also available on the NAIF website at: https://naif.jpl.nasa.gov/pub/naif/toolkit_
docs/C/req/index.html.

The Required Reading documents are provided with the Toolkit and are located under the “cspice/doc” directory in the
CSPICE Toolkit installation tree.

Name Lesson steps/functions that it describes
ck.req Obtaining spacecraft orientation data
dsk.req Obtaining detailed body shape data
frames.req Using reference frames

naif_ids.req Determining body ID codes

pck.req Obtaining planetary constants data
sclk.req SCLK time conversion

spk.req Obtaining ephemeris Data

time.req Time conversion

The Permuted Index

Tip:

The Permuted Index is also available on the NAIF website at: https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/
info/cspice_idx.html.

Another useful document distributed with the Toolkit is the permuted index. This is located under the “cspice/doc”
directory in the C installation tree.

This text document provides a simple mechanism by which users can discover which SpiceyPy functions perform
functions of interest, as well as the names of the source files that contain these functions.

SpiceyPy APl Documentation

A SpiceyPy function’s parameters specification is available using the built-in Python help system.

For example, the Python help function

>>> import spiceypy
>>> help(spiceypy.str2et)

describes of the str2et function’s parameters, while the document

https://naif. jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/str2et_c.html

18 Chapter 3. Documentation Overview



https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/index.html
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/index.html
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/index.html
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/info/cspice_idx.html
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/info/cspice_idx.html
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/info/cspice_idx.html

SpiceyPy Documentation, Release 4.0.1

describes extensively the str2et functionality.

Kernels Used

The following kernels are used in examples provided in this lesson:

# FILE NAME TYPE DESCRIPTION

1 naif0®008.tls LSK Generic LSK

2 cas00084.tsc SCLK Cassini SCLK

3 981005_PLTEPH-DE405S.bsp SPK Solar System Ephemeris
4 020514_SE_SAT105.bsp SPK Saturnian Satellite Ephemeris
5 030201AP_SK_SM546_T45.bsp SPK Cassini Spacecraft SPK
6 cas_v37.tf FK  Cassini FK

7 04135_04171pc_psiv2.bc CK Cassini Spacecraft CK
8 cpck05Mar2004.tpc PCK Cassini Project PCK

9 phoebe_64q.bds DSK Phoebe DSK

10 cas_iss_v09.ti IK  ISS Instrument Kernel

These SPICE kernels are included in the lesson package available from the NAIF server at JPL:

ftp://naif. jpl.nasa.gov/pub/naif/toolkit_docs/Lessons/

In addition to these kernels, the extra credit exercises require the following kernels:

# FILE NAME TYPE DESCRIPTION

11 jup310_2004.bsp SPK Generic Jovian Satellite Ephemeris

These SPICE kernels are available from the NAIF server at JPL:

https://naif. jpl.nasa.gov/pub/naif/generic_kernels/spk/satellites/

SpiceyPy Modules Used

This section provides a complete list of the functions and kernels that are suggested for usage in each of the exercises
in this lesson. (You may wish to not look at this list unless/until you “get stuck™ while working on your own.)

CHAPTER EXERCISE  FUNCTIONS NON-VOID

1 convtm spiceypy.furnsh spiceypy.
spiceypy.unload spiceypy.

spiceypy.

spiceypy.

extra (%) spiceypy.
spiceypy.
spiceypy.
spiceypy.

2 getsta spiceypy.furnsh spiceypy.
spiceypy.unload spiceypy.

str2et
etcal
timout
sce2s

unitim
sct2e
et2utc
scs2e

str2et
spkezr

KERNELS

1,3-5

(continues on next page)

3.8. Lessons

19




SpiceyPy Documentation, Release 4.0.1

(continued from previous page)

spiceypy.spkpos
spiceypy.vnorm
spiceypy.convrt

extra (*) spiceypy.kclear 1,3-5,11

3 xform spiceypy.furnsh spiceypy.str2et 1-8

spiceypy.unload spiceypy.spkezr
spiceypy.sxform
spiceypy.mxvg
spiceypy.spkpos
spiceypy.pxform
spiceypy.mxv
spiceypy.convrt
spiceypy.vsep

extra (*) spiceypy.kclear 1-8

4 subpts spiceypy.furnsh spiceypy.str2et 1,3-5,8,9
spiceypy.unload spiceypy.subpnt
spiceypy.vnorm
spiceypy.subslr

extra (*) spiceypy.kclear spiceypy.reclat 1,3-5,8
spiceypy.dpr
spiceypy.bodvrd
spiceypy.recpgr

5 fovint spiceypy.furnsh spiceypy.str2et 1-10

spiceypy.unload spiceypy.bodn2c
spiceypy.getfov
spiceypy.sincpt
spiceypy.reclat
spiceypy.dpr
spiceypy.illumf
spiceypy.et2lst

(*) Additional APIs and kernels used in Extra Credit tasks.

Use the Python built-in help system on the various functions listed above for the API parameters’ description, and refer
to the headers of their corresponding CSPICE versions for detailed interface specifications.

20 Chapter 3. Documentation Overview




SpiceyPy Documentation, Release 4.0.1

Time Conversion (convtm)

Task Statement

Write a program that prompts the user for an input UTC time string, converts it to the following time systems and output
formats:

1. Ephemeris Time (ET) in seconds past J2000
2. Calendar Ephemeris Time

3. Spacecraft Clock Time

and displays the results. Use the program to convert “2004 jun 11 19:32:00” UTC into these alternate systems.

Learning Goals

Familiarity with the various time conversion and parsing functions available in the Toolkit. Exposure to source code
headers and their usage in learning to call functions.

Approach

The solution to the problem can be broken down into a series of simple steps:

-- Decide which SPICE kernels are necessary. Prepare a meta-kernel
listing the kernels and load it into the program.

--  Prompt the user for an input UTC time string.

-- Convert the input time string into ephemeris time expressed as
seconds past J2000 TDB. Display the result.

-- Convert ephemeris time into a calendar format. Display the
result.

-- Convert ephemeris time into a spacecraft clock string. Display
the result.

You may find it useful to consult the permuted index, the headers of various source modules, and the “Time Required
Reading” (time.req) and” SCLK Required Reading” (sclk.req) documents.

When completing the “calendar format” step above, consider using one of two possible methods: spiceypy.etcal or
spiceypy.timout.

3.8. Lessons 21




SpiceyPy Documentation, Release 4.0.1

Solution

Solution Meta-Kernel

The meta-kernel we created for the solution to this exercise is named ‘convtm.tm’. Its contents follow:

KPL/MK

This is the meta-kernel used in the solution of the "Time
Conversion" task in the Remote Sensing Hands On Lesson.

The names and contents of the kernels referenced by this

meta-kernel are as follows:

File name Contents
naif0008.tls Generic LSK
cas00084.tsc Cassini SCLK
\begindata

KERNELS_TO_LOAD = ( 'kernels/lsk/naif@008.tls',

'kernels/sclk/cas®0084.tsc' )

\begintext

Solution Source Code

A sample solution to the problem follows:

#

# Solution convtm

#

from __future__ import print_function

from builtins import input
import spiceypy

def convtm():

#

# Local Parameters
#

METAKR = 'convtm.tm'
SCLKID = -82

spiceypy.furnsh( METAKR )

#

# Prompt the user for the input time string.
#

utctim = input( "Input UTC Time: ' )

print( 'Converting UTC Time: ' format( utctim ) )

#

(continues on next page)

22

Chapter 3.

Documentation Overview




SpiceyPy Documentation, Release 4.0.1

(continued from previous page)

# Convert utctim to ET.
#
et = spiceypy.str2et( utctim )

print( ' ET Seconds Past J2000: {:16.3f}'.format( et ) )

#

# Now convert ET to a calendar time string.
# This can be accomplished in two ways.

#

calet = spiceypy.etcal( et )

print( ' Calendar ET (etcal): {:5}".format( calet ) )

#

# Or use timout for finer control over the

# output format. The picture below was built

# by examining the header of timout.

#

calet = spiceypy.timout( et, 'YYYY-MON-DDTHR:MN:SC ::TDB' )

print( ' Calendar ET (timout): <{:s}'.format( calet ) )
#

# Convert ET to spacecraft clock time.

#

sclkst = spiceypy.sce2s( SCLKID, et )
print( ' Spacecraft Clock Time: {:s}'.format( sclkst ) )
spiceypy.unload( METAKR )

if __name__ == '__main__'

convtm()

Solution Sample Output

Execute the program:

Input UTC Time: 2004 jun 11 19:32:00

Converting UTC Time: 2004 jun 11 19:32:00
ET Seconds Past ]2000: 140254384.185
Calendar ET (etcal): 2004 JUN 11 19:33:04.184
Calendar ET (timout): 2004-JUN-11T19:33:04
Spacecraft Clock Time: 1/1465674964.105

3.8. Lessons

23




SpiceyPy Documentation, Release 4.0.1

Extra Credit

In this “extra credit” section you will be presented with more complex tasks, aimed at improving your understanding
of time conversions, the Toolkit routines that deal with them, and some common errors that may happen during the
execution of these conversions.

These “extra credit” tasks are provided as task statements, and unlike the regular tasks, no approach or solution source
code is provided. In the next section, you will find the numeric solutions (when applicable) and answers to the questions
asked in these tasks.

Task statements and questions

1. Extend your program to convert the input UTC time string to TDB
Julian Date. Convert "2004 jun 11 19:32:00" UTC.

2. Remove the LSK from the original meta-kernel and run your
program again, using the same inputs as before. Has anything
changed? Why?

3. Remove the SCLK from the original meta-kernel and run your
program again, using the same inputs as before. Has anything
changed? Why?

4. Modify your program to perform conversion of UTC or ephemeris
time, to a spacecraft clock string using the NAIF ID for the
CASSINI ISS NAC camera. Convert "2004 jun 11 19:32:00" UTC.

5. Find the earliest UTC time that can be converted to CASSINI
spacecraft clock.

6. Extend your program to convert the spacecraft clock time
obtained in the regular task back to UTC Time and present it in
ISO calendar date format, with a resolution of milliseconds.

7. Examine the contents of the generic LSK and the CASSINI SCLK
kernels. Can you understand and explain what you see?

Solutions and answers

1. Two methods exist in order to convert ephemeris time to Julian
Date: spiceypy.unitim and spiceypy.timout. The difference
between them is the type of output produced by each method.
spiceypy.unitim returns the double precision value of an input
epoch, while spiceypy.timout returns the string representation
of the ephemeris time in Julian Date format (when picture input
is set to 'JULIAND.######### ::TDB'). Refer to the function
header for further details. The solution for the requested
input UTC string is:

Julian Date TDB: 2453168.3146318

2. When running the original program without the LSK kernel, an
error is produced:

(continues on next page)

24 Chapter 3. Documentation Overview




SpiceyPy Documentation, Release 4.0.1

(continued from previous page)

Traceback (most recent call last):
File "convtm.py", line 67, in <module>
convtm()
File "convtm.py", line 30, in convtm
et = spiceypy.str2et( utctim )
File "/home/bsemenov/local/lib/python3.5/site-packages/spiceypy/spi
ceypy.py", line 76, in with_errcheck
check_for_spice_error(f)
File "/home/bsemenov/local/lib/python3.5/site-packages/spiceypy/spi
ceypy.py", line 59, in check_for_spice_error
raise stypes.SpiceyError(msg)
spiceypy.utils.support_types.SpiceyError:

Toolkit version: NO®66

SPICE(NOLEAPSECONDS) --

The variable that points to the leapseconds (DELTET/DELTA_AT) could n
ot be located in the kernel pool. It is likely that the leapseconds

kernel has not been loaded via the routine FURNSH.

str2et_c --> STR2ET --> TTRANS

This error is triggered by spiceypy.str2et because the variable
that points to the leapseconds is not present in the kernel
pool and therefore the program lacks data required to perform
the requested UTC to ephemeris time conversion.

By default, SPICE will report, as a minimum, a short
descriptive message and a expanded form of this short message
where more details about the error are provided. If this error
message is not sufficient for you to understand what has
happened, you could go to the "Exceptions" section in the
SPICELIB or CSPICE headers of the fun